A Deep Hashing Learning Network

نویسندگان

  • Guoqiang Zhong
  • Pan Yang
  • Sijiang Wang
  • Junyu Dong
چکیده

Hashing-based methods seek compact and efficient binary codes that preserve the neighborhood structure in the original data space. For most existing hashing methods, an image is first encoded as a vector of hand-crafted visual feature, followed by a hash projection and quantization step to get the compact binary vector. Most of the hand-crafted features just encode the low-level information of the input, the feature may not preserve the semantic similarities of images pairs. Meanwhile, the hashing function learning process is independent with the feature representation, so the feature may not be optimal for the hashing projection. In this paper, we propose a supervised hashing method based on a well designed deep convolutional neural network, which tries to learn hashing code and compact representations of data simultaneously. The proposed model learn the binary codes by adding a compact sigmoid layer before the loss layer. Experiments on several image data sets show that the proposed model outperforms other state-of-the-art methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Reinforcement Learning for Image Hashing

Deep hashing methods have received much attention recently, which achieve promising results by taking advantage of the strong representation power of deep networks. However, most existing deep hashing methods learn a whole set of hashing functions independently and directly, while ignore the correlation between different hashing functions that can promote the retrieval accuracy greatly. Inspire...

متن کامل

Unsupervised Semantic Deep Hashing

In recent years, deep hashing methods have been proved to be efficient since it employs convolutional neural network to learn features and hashing codes simultaneously. However, these methods are mostly supervised. In real-world application, it is a time-consuming and overloaded task for annotating a large number of images. In this paper, we propose a novel unsupervised deep hashing method for ...

متن کامل

Deep Class-Wise Hashing: Semantics-Preserving Hashing via Class-wise Loss

Deep supervised hashing has emerged as an influential solution to large-scale semantic image retrieval problems in computer vision. In the light of recent progress, convolutional neural network based hashing methods typically seek pair-wise or triplet labels to conduct the similarity preserving learning. However, complex semantic concepts of visual contents are hard to capture by similar/dissim...

متن کامل

SSDH: Semi-supervised Deep Hashing for Large Scale Image Retrieval

The hashing methods have been widely used for efficient similarity retrieval on large scale image datasets. The traditional hashing methods learn hash functions to generate binary codes from hand-crafted features, which achieve limited accuracy since the hand-crafted features cannot optimally represent the image content and preserve the semantic similarity. Recently, several deep hashing method...

متن کامل

Feature Learning Based Deep Supervised Hashing with Pairwise Labels

Recent years have witnessed wide application of hashing for large-scale image retrieval. However, most existing hashing methods are based on hand-crafted features which might not be optimally compatible with the hashing procedure. Recently, deep hashing methods have been proposed to perform simultaneous feature learning and hashcode learning with deep neural networks, which have shown better pe...

متن کامل

Deep Supervised Hashing with Triplet Labels

Hashing is one of the most popular and powerful approximate nearest neighbor search techniques for large-scale image retrieval. Most traditional hashing methods first represent images as off-the-shelf visual features and then produce hashing codes in a separate stage. However, off-the-shelf visual features may not be optimally compatible with the hash code learning procedure, which may result i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1507.04437  شماره 

صفحات  -

تاریخ انتشار 2015